Tuesday, March 29, 2016
Building highly available applications using Kubernetes new multi-zone clusters (a.k.a. 'Ubernetes Lite')
Editor’s note: this is the third post in a series of in-depth posts on what’s new in Kubernetes 1.2
Introduction
One of the most frequently-requested features for Kubernetes is the ability to run applications across multiple zones. And with good reason — developers need to deploy applications across multiple domains, to improve availability in thxe advent of a single zone outage.
Kubernetes 1.2, released two weeks ago, adds support for running a single cluster across multiple failure zones (GCP calls them simply “zones,” Amazon calls them “availability zones,” here we’ll refer to them as “zones”). This is the first step in a broader effort to allow federating multiple Kubernetes clusters together (sometimes referred to by the affectionate nickname “Ubernetes”). This initial version (referred to as “Ubernetes Lite”) offers improved application availability by spreading applications across multiple zones within a single cloud provider.
Multi-zone clusters are deliberately simple, and by design, very easy to use — no Kubernetes API changes were required, and no application changes either. You simply deploy your existing Kubernetes application into a new-style multi-zone cluster, and your application automatically becomes resilient to zone failures.
Now into some details …
Ubernetes Lite works by leveraging the Kubernetes platform’s extensibility through labels. Today, when nodes are started, labels are added to every node in the system. With Ubernetes Lite, the system has been extended to also add information about the zone it’s being run in. With that, the scheduler can make intelligent decisions about placing application instances.
Specifically, the scheduler already spreads pods to minimize the impact of any single node failure. With Ubernetes Lite, via SelectorSpreadPriority
, the scheduler will make a best-effort placement to spread across zones as well. We should note, if the zones in your cluster are heterogenous (e.g., different numbers of nodes or different types of nodes), you may not be able to achieve even spreading of your pods across zones. If desired, you can use homogenous zones (same number and types of nodes) to reduce the probability of unequal spreading.
This improved labeling also applies to storage. When persistent volumes are created, the PersistentVolumeLabel
admission controller automatically adds zone labels to them. The scheduler (via the VolumeZonePredicate
predicate) will then ensure that pods that claim a given volume are only placed into the same zone as that volume, as volumes cannot be attached across zones.
Walkthrough
We’re now going to walk through setting up and using a multi-zone cluster on both Google Compute Engine (GCE) and Amazon EC2 using the default kube-up script that ships with Kubernetes. Though we highlight GCE and EC2, this functionality is available in any Kubernetes 1.2 deployment where you can make changes during cluster setup. This functionality will also be available in Google Container Engine (GKE) shortly.
Bringing up your cluster
Creating a multi-zone deployment for Kubernetes is the same as for a single-zone cluster, but you’ll need to pass an environment variable ("MULTIZONE”
) to tell the cluster to manage multiple zones. We’ll start by creating a multi-zone-aware cluster on GCE and/or EC2.
GCE:
curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=gce
KUBE_GCE_ZONE=us-central1-a NUM_NODES=3 bash
EC2:
curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=aws
KUBE_AWS_ZONE=us-west-2a NUM_NODES=3 bash
At the end of this command, you will have brought up a cluster that is ready to manage nodes running in multiple zones. You’ll also have brought up NUM_NODES
nodes and the cluster’s control plane (i.e., the Kubernetes master), all in the zone specified by KUBE_{GCE,AWS}_ZONE
. In a future iteration of Ubernetes Lite, we’ll support a HA control plane, where the master components are replicated across zones. Until then, the master will become unavailable if the zone where it is running fails. However, containers that are running in all zones will continue to run and be restarted by Kubelet if they fail, thus the application itself will tolerate such a zone failure.
Nodes are labeled
To see the additional metadata added to the node, simply view all the labels for your cluster (the example here is on GCE):
$ kubectl get nodes --show-labels
NAME STATUS AGE LABELS
kubernetes-master Ready,SchedulingDisabled 6m
beta.kubernetes.io/instance-type=n1-standard-1,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-master
kubernetes-minion-87j9 Ready 6m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-87j9
kubernetes-minion-9vlv Ready 6m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-a12q Ready 6m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-a12q
The scheduler will use the labels attached to each of the nodes (failure-domain.beta.kubernetes.io/region for the region, and failure-domain.beta.kubernetes.io/zone for the zone) in its scheduling decisions.
Add more nodes in a second zone
Let’s add another set of nodes to the existing cluster, but running in a different zone (us-central1-b for GCE, us-west-2b for EC2). We run kube-up again, but by specifying KUBE_USE_EXISTING_MASTER=1
kube-up will not create a new master, but will reuse one that was previously created.
GCE:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce
KUBE_GCE_ZONE=us-central1-b NUM_NODES=3 kubernetes/cluster/kube-up.sh
On EC2, we also need to specify the network CIDR for the additional subnet, along with the master internal IP address:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws
KUBE_AWS_ZONE=us-west-2b NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.1.0/24
MASTER_INTERNAL_IP=172.20.0.9 kubernetes/cluster/kube-up.sh
View the nodes again; 3 more nodes will have been launched and labelled (the example here is on GCE):
$ kubectl get nodes --show-labels
NAME STATUS AGE LABELS
kubernetes-master Ready,SchedulingDisabled 16m
beta.kubernetes.io/instance-type=n1-standard-1,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-master
kubernetes-minion-281d Ready 2m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kub
ernetes.io/hostname=kubernetes-minion-281d
kubernetes-minion-87j9 Ready 16m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-87j9
kubernetes-minion-9vlv Ready 16m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-a12q Ready 17m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-a12q
kubernetes-minion-pp2f Ready 2m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kub
ernetes.io/hostname=kubernetes-minion-pp2f
kubernetes-minion-wf8i Ready 2m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kub
ernetes.io/hostname=kubernetes-minion-wf8i
Let’s add one more zone:
GCE:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce
KUBE_GCE_ZONE=us-central1-f NUM_NODES=3 kubernetes/cluster/kube-up.sh
EC2:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws
KUBE_AWS_ZONE=us-west-2c NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.2.0/24
MASTER_INTERNAL_IP=172.20.0.9 kubernetes/cluster/kube-up.sh
Verify that you now have nodes in 3 zones:
kubectl get nodes --show-labels
Highly available apps, here we come.
Deploying a multi-zone application
Create the guestbook-go example, which includes a ReplicationController of size 3, running a simple web app. Download all the files from here, and execute the following command (the command assumes you downloaded them to a directory named “guestbook-go”:
kubectl create -f guestbook-go/
You’re done! Your application is now spread across all 3 zones. Prove it to yourself with the following commands:
$ kubectl describe pod -l app=guestbook | grep Node
Node: kubernetes-minion-9vlv/10.240.0.5
Node: kubernetes-minion-281d/10.240.0.8
Node: kubernetes-minion-olsh/10.240.0.11
$ kubectl get node kubernetes-minion-9vlv kubernetes-minion-281d
kubernetes-minion-olsh --show-labels
NAME STATUS AGE LABELS
kubernetes-minion-9vlv Ready 34m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kub
ernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-281d Ready 20m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kub
ernetes.io/hostname=kubernetes-minion-281d
kubernetes-minion-olsh Ready 3m
beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.
io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-f,kub
ernetes.io/hostname=kubernetes-minion-olsh
Further, load-balancers automatically span all zones in a cluster; the guestbook-go example includes an example load-balanced service:
$ kubectl describe service guestbook | grep LoadBalancer.Ingress
LoadBalancer Ingress: 130.211.126.21
ip=130.211.126.21
$ curl -s http://${ip}:3000/env | grep HOSTNAME
"HOSTNAME": "guestbook-44sep",
$ (for i in `seq 20`; do curl -s http://${ip}:3000/env | grep HOSTNAME; done)
| sort | uniq
"HOSTNAME": "guestbook-44sep",
"HOSTNAME": "guestbook-hum5n",
"HOSTNAME": "guestbook-ppm40",
The load balancer correctly targets all the pods, even though they’re in multiple zones.
Shutting down the cluster
When you’re done, clean up:
GCE:
KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true
KUBE_GCE_ZONE=us-central1-f kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true
KUBE_GCE_ZONE=us-central1-b kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-a
kubernetes/cluster/kube-down.sh
EC2:
KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2c
kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2b
kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2a
kubernetes/cluster/kube-down.sh
Conclusion
A core philosophy for Kubernetes is to abstract away the complexity of running highly available, distributed applications. As you can see here, other than a small amount of work at cluster spin-up time, all the complexity of launching application instances across multiple failure domains requires no additional work by application developers, as it should be. And we’re just getting started!
Please join our community and help us build the future of Kubernetes! There are many ways to participate. If you’re particularly interested in scalability, you’ll be interested in:
- Our federation slack channel
- The federation “Special Interest Group,” which meets every Thursday at 9:30 a.m. Pacific Time at SIG-Federation hangout
And of course for more information about the project in general, go to www.kubernetes.io
– Quinton Hoole, Staff Software Engineer, Google, and Justin Santa Barbara
- Docs are Migrating from Jekyll to Hugo May 5
- Announcing Kubeflow 0.1 May 4
- Current State of Policy in Kubernetes May 2
- Developing on Kubernetes May 1
- Zero-downtime Deployment in Kubernetes with Jenkins Apr 30
- Kubernetes Community - Top of the Open Source Charts in 2017 Apr 25
- Local Persistent Volumes for Kubernetes Goes Beta Apr 13
- Container Storage Interface (CSI) for Kubernetes Goes Beta Apr 10
- Fixing the Subpath Volume Vulnerability in Kubernetes Apr 4
- Principles of Container-based Application Design Mar 15
- Expanding User Support with Office Hours Mar 14
- How to Integrate RollingUpdate Strategy for TPR in Kubernetes Mar 13
- Apache Spark 2.3 with Native Kubernetes Support Mar 6
- Kubernetes: First Beta Version of Kubernetes 1.10 is Here Mar 2
- Reporting Errors from Control Plane to Applications Using Kubernetes Events Jan 25
- Core Workloads API GA Jan 15
- Introducing client-go version 6 Jan 12
- Extensible Admission is Beta Jan 11
- Introducing Container Storage Interface (CSI) Alpha for Kubernetes Jan 10
- Kubernetes v1.9 releases beta support for Windows Server Containers Jan 9
- Five Days of Kubernetes 1.9 Jan 8
- Introducing Kubeflow - A Composable, Portable, Scalable ML Stack Built for Kubernetes Dec 21
- Kubernetes 1.9: Apps Workloads GA and Expanded Ecosystem Dec 15
- Using eBPF in Kubernetes Dec 7
- PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes Dec 6
- Autoscaling in Kubernetes Nov 17
- Certified Kubernetes Conformance Program: Launch Celebration Round Up Nov 16
- Kubernetes is Still Hard (for Developers) Nov 15
- Securing Software Supply Chain with Grafeas Nov 3
- Containerd Brings More Container Runtime Options for Kubernetes Nov 2
- Kubernetes the Easy Way Nov 1
- Enforcing Network Policies in Kubernetes Oct 30
- Using RBAC, Generally Available in Kubernetes v1.8 Oct 28
- It Takes a Village to Raise a Kubernetes Oct 26
- kubeadm v1.8 Released: Introducing Easy Upgrades for Kubernetes Clusters Oct 25
- Five Days of Kubernetes 1.8 Oct 24
- Introducing Software Certification for Kubernetes Oct 19
- Request Routing and Policy Management with the Istio Service Mesh Oct 10
- Kubernetes Community Steering Committee Election Results Oct 5
- Kubernetes 1.8: Security, Workloads and Feature Depth Sep 29
- Kubernetes StatefulSets & DaemonSets Updates Sep 27
- Introducing the Resource Management Working Group Sep 21
- Windows Networking at Parity with Linux for Kubernetes Sep 8
- Kubernetes Meets High-Performance Computing Aug 22
- High Performance Networking with EC2 Virtual Private Clouds Aug 11
- Kompose Helps Developers Move Docker Compose Files to Kubernetes Aug 10
- Happy Second Birthday: A Kubernetes Retrospective Jul 28
- How Watson Health Cloud Deploys Applications with Kubernetes Jul 14
- Kubernetes 1.7: Security Hardening, Stateful Application Updates and Extensibility Jun 30
- Draft: Kubernetes container development made easy May 31
- Managing microservices with the Istio service mesh May 31
- Kubespray Ansible Playbooks foster Collaborative Kubernetes Ops May 19
- Kubernetes: a monitoring guide May 19
- Dancing at the Lip of a Volcano: The Kubernetes Security Process - Explained May 18
- How Bitmovin is Doing Multi-Stage Canary Deployments with Kubernetes in the Cloud and On-Prem Apr 21
- RBAC Support in Kubernetes Apr 6
- Configuring Private DNS Zones and Upstream Nameservers in Kubernetes Apr 4
- Advanced Scheduling in Kubernetes Mar 31
- Scalability updates in Kubernetes 1.6: 5,000 node and 150,000 pod clusters Mar 30
- Five Days of Kubernetes 1.6 Mar 29
- Dynamic Provisioning and Storage Classes in Kubernetes Mar 29
- Kubernetes 1.6: Multi-user, Multi-workloads at Scale Mar 28
- The K8sPort: Engaging Kubernetes Community One Activity at a Time Mar 24
- Deploying PostgreSQL Clusters using StatefulSets Feb 24
- Containers as a Service, the foundation for next generation PaaS Feb 21
- Inside JD.com's Shift to Kubernetes from OpenStack Feb 10
- Run Deep Learning with PaddlePaddle on Kubernetes Feb 8
- Highly Available Kubernetes Clusters Feb 2
- Running MongoDB on Kubernetes with StatefulSets Jan 30
- Fission: Serverless Functions as a Service for Kubernetes Jan 30
- How we run Kubernetes in Kubernetes aka Kubeception Jan 20
- Scaling Kubernetes deployments with Policy-Based Networking Jan 19
- A Stronger Foundation for Creating and Managing Kubernetes Clusters Jan 12
- Kubernetes UX Survey Infographic Jan 9
- Kubernetes supports OpenAPI Dec 23
- Cluster Federation in Kubernetes 1.5 Dec 22
- Windows Server Support Comes to Kubernetes Dec 21
- StatefulSet: Run and Scale Stateful Applications Easily in Kubernetes Dec 20
- Introducing Container Runtime Interface (CRI) in Kubernetes Dec 19
- Five Days of Kubernetes 1.5 Dec 19
- Kubernetes 1.5: Supporting Production Workloads Dec 13
- From Network Policies to Security Policies Dec 8
- Kompose: a tool to go from Docker-compose to Kubernetes Nov 22
- Kubernetes Containers Logging and Monitoring with Sematext Nov 18
- Visualize Kubelet Performance with Node Dashboard Nov 17
- CNCF Partners With The Linux Foundation To Launch New Kubernetes Certification, Training and Managed Service Provider Program Nov 8
- Modernizing the Skytap Cloud Micro-Service Architecture with Kubernetes Nov 7
- Bringing Kubernetes Support to Azure Container Service Nov 7
- Tail Kubernetes with Stern Oct 31
- Introducing Kubernetes Service Partners program and a redesigned Partners page Oct 31
- How We Architected and Run Kubernetes on OpenStack at Scale at Yahoo! JAPAN Oct 24
- Building Globally Distributed Services using Kubernetes Cluster Federation Oct 14
- Helm Charts: making it simple to package and deploy common applications on Kubernetes Oct 10
- Dynamic Provisioning and Storage Classes in Kubernetes Oct 7
- How we improved Kubernetes Dashboard UI in 1.4 for your production needs Oct 3
- How we made Kubernetes insanely easy to install Sep 28
- How Qbox Saved 50% per Month on AWS Bills Using Kubernetes and Supergiant Sep 27
- Kubernetes 1.4: Making it easy to run on Kubernetes anywhere Sep 26
- High performance network policies in Kubernetes clusters Sep 21
- Creating a PostgreSQL Cluster using Helm Sep 9
- Deploying to Multiple Kubernetes Clusters with kit Sep 6
- Cloud Native Application Interfaces Sep 1
- Security Best Practices for Kubernetes Deployment Aug 31
- Scaling Stateful Applications using Kubernetes Pet Sets and FlexVolumes with Datera Elastic Data Fabric Aug 29
- SIG Apps: build apps for and operate them in Kubernetes Aug 16
- Kubernetes Namespaces: use cases and insights Aug 16
- Create a Couchbase cluster using Kubernetes Aug 15
- Challenges of a Remotely Managed, On-Premises, Bare-Metal Kubernetes Cluster Aug 2
- Why OpenStack's embrace of Kubernetes is great for both communities Jul 26
- The Bet on Kubernetes, a Red Hat Perspective Jul 21
- Happy Birthday Kubernetes. Oh, the places you’ll go! Jul 21
- A Very Happy Birthday Kubernetes Jul 21
- Bringing End-to-End Kubernetes Testing to Azure (Part 2) Jul 18
- Steering an Automation Platform at Wercker with Kubernetes Jul 15
- Dashboard - Full Featured Web Interface for Kubernetes Jul 15
- Cross Cluster Services - Achieving Higher Availability for your Kubernetes Applications Jul 14
- Citrix + Kubernetes = A Home Run Jul 14
- Thousand Instances of Cassandra using Kubernetes Pet Set Jul 13
- Stateful Applications in Containers!? Kubernetes 1.3 Says “Yes!” Jul 13
- Kubernetes in Rancher: the further evolution Jul 12
- Autoscaling in Kubernetes Jul 12
- rktnetes brings rkt container engine to Kubernetes Jul 11
- Minikube: easily run Kubernetes locally Jul 11
- Five Days of Kubernetes 1.3 Jul 11
- Updates to Performance and Scalability in Kubernetes 1.3 -- 2,000 node 60,000 pod clusters Jul 7
- Kubernetes 1.3: Bridging Cloud Native and Enterprise Workloads Jul 6
- Container Design Patterns Jun 21
- The Illustrated Children's Guide to Kubernetes Jun 9
- Bringing End-to-End Kubernetes Testing to Azure (Part 1) Jun 6
- Hypernetes: Bringing Security and Multi-tenancy to Kubernetes May 24
- CoreOS Fest 2016: CoreOS and Kubernetes Community meet in Berlin (& San Francisco) May 3
- Introducing the Kubernetes OpenStack Special Interest Group Apr 22
- SIG-UI: the place for building awesome user interfaces for Kubernetes Apr 20
- SIG-ClusterOps: Promote operability and interoperability of Kubernetes clusters Apr 19
- SIG-Networking: Kubernetes Network Policy APIs Coming in 1.3 Apr 18
- How to deploy secure, auditable, and reproducible Kubernetes clusters on AWS Apr 15
- Container survey results - March 2016 Apr 8
- Adding Support for Kubernetes in Rancher Apr 8
- Configuration management with Containers Apr 4
- Using Deployment objects with Kubernetes 1.2 Apr 1
- Kubernetes 1.2 and simplifying advanced networking with Ingress Mar 31
- Using Spark and Zeppelin to process big data on Kubernetes 1.2 Mar 30
- Building highly available applications using Kubernetes new multi-zone clusters (a.k.a. 'Ubernetes Lite') Mar 29
- AppFormix: Helping Enterprises Operationalize Kubernetes Mar 29
- How container metadata changes your point of view Mar 28
- Five Days of Kubernetes 1.2 Mar 28
- 1000 nodes and beyond: updates to Kubernetes performance and scalability in 1.2 Mar 28
- Scaling neural network image classification using Kubernetes with TensorFlow Serving Mar 23
- Kubernetes 1.2: Even more performance upgrades, plus easier application deployment and management Mar 17
- Kubernetes in the Enterprise with Fujitsu’s Cloud Load Control Mar 11
- ElasticBox introduces ElasticKube to help manage Kubernetes within the enterprise Mar 11
- State of the Container World, February 2016 Mar 1
- Kubernetes Community Meeting Notes - 20160225 Mar 1
- KubeCon EU 2016: Kubernetes Community in London Feb 24
- Kubernetes Community Meeting Notes - 20160218 Feb 23
- Kubernetes Community Meeting Notes - 20160211 Feb 16
- ShareThis: Kubernetes In Production Feb 11
- Kubernetes Community Meeting Notes - 20160204 Feb 9
- Kubernetes Community Meeting Notes - 20160128 Feb 2
- State of the Container World, January 2016 Feb 1
- Kubernetes Community Meeting Notes - 20160121 Jan 28
- Kubernetes Community Meeting Notes - 20160114 Jan 28
- Why Kubernetes doesn’t use libnetwork Jan 14
- Simple leader election with Kubernetes and Docker Jan 11
- Creating a Raspberry Pi cluster running Kubernetes, the installation (Part 2) Dec 22
- Managing Kubernetes Pods, Services and Replication Controllers with Puppet Dec 17
- How Weave built a multi-deployment solution for Scope using Kubernetes Dec 12
- Creating a Raspberry Pi cluster running Kubernetes, the shopping list (Part 1) Nov 25
- Monitoring Kubernetes with Sysdig Nov 19
- One million requests per second: Dependable and dynamic distributed systems at scale Nov 11
- Kubernetes 1.1 Performance upgrades, improved tooling and a growing community Nov 9
- Kubernetes as Foundation for Cloud Native PaaS Nov 3
- Some things you didn’t know about kubectl Oct 28
- Kubernetes Performance Measurements and Roadmap Sep 10
- Using Kubernetes Namespaces to Manage Environments Aug 28
- Weekly Kubernetes Community Hangout Notes - July 31 2015 Aug 4
- The Growing Kubernetes Ecosystem Jul 24
- Weekly Kubernetes Community Hangout Notes - July 17 2015 Jul 23
- Strong, Simple SSL for Kubernetes Services Jul 14
- Weekly Kubernetes Community Hangout Notes - July 10 2015 Jul 13
- Announcing the First Kubernetes Enterprise Training Course Jul 8
- Kubernetes 1.0 Launch Event at OSCON Jul 2
- How did the Quake demo from DockerCon Work? Jul 2
- The Distributed System ToolKit: Patterns for Composite Containers Jun 29
- Slides: Cluster Management with Kubernetes, talk given at the University of Edinburgh Jun 26
- Cluster Level Logging with Kubernetes Jun 11
- Weekly Kubernetes Community Hangout Notes - May 22 2015 Jun 2
- Kubernetes on OpenStack May 19
- Weekly Kubernetes Community Hangout Notes - May 15 2015 May 18
- Docker and Kubernetes and AppC May 18
- Kubernetes Release: 0.17.0 May 15
- Resource Usage Monitoring in Kubernetes May 12
- Weekly Kubernetes Community Hangout Notes - May 1 2015 May 11
- Kubernetes Release: 0.16.0 May 11
- AppC Support for Kubernetes through RKT May 4
- Weekly Kubernetes Community Hangout Notes - April 24 2015 Apr 30
- Borg: The Predecessor to Kubernetes Apr 23
- Kubernetes and the Mesosphere DCOS Apr 22
- Weekly Kubernetes Community Hangout Notes - April 17 2015 Apr 17
- Kubernetes Release: 0.15.0 Apr 16
- Introducing Kubernetes API Version v1beta3 Apr 16
- Weekly Kubernetes Community Hangout Notes - April 10 2015 Apr 11
- Faster than a speeding Latte Apr 6
- Weekly Kubernetes Community Hangout Notes - April 3 2015 Apr 4
- Paricipate in a Kubernetes User Experience Study Mar 31
- Weekly Kubernetes Community Hangout Notes - March 27 2015 Mar 28
- Kubernetes Gathering Videos Mar 23
- Welcome to the Kubernetes Blog! Mar 20